www.my.mainscloud.com

University College London DEPARTMENT OF MATHEMATICS Mid-Sessional Examinations 2006 Mathematics M12A Friday 13 January 2006 11.30 - 1.30 or 2.05 - 4.05

All questions may be attempted but only marks obtained on the the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1) (i) Negate the following formula, and replace it by an equivalent one which does not involve \neg , , \wedge or \vee ;

$$(\forall y)(\exists x)\neg (P(x) \land \neg Q(y)) \land (\forall x)(\exists y) (Q(y) \land \neg P(y)).$$

(ii) Let $f: A \to B$ be a mapping between sets A, B. Explain what is meant by saying that (a) f is injective; (b) f is invertible and show that an invertible mapping is injective.

Show that the mapping $f: \mathbf{Z} \to \mathbf{Z}$; f(x) = 3x + 1 is injective and decide whether or not it is surjective.

Decide with proof whether the mapping g below is injective

$$g: \mathbf{R} \to \mathbf{R}$$
 ; $g(x) = \frac{x}{x^2 + 1}$.

2) Let $\epsilon(r,s)$ be the basic $m \times m$ matrix given by $\epsilon(r,s)_{ij} = \delta_{ri}\delta_{sj}$ where ' δ ' denotes the Kronecker delta. Explain without proof how to calculate the product $\epsilon(r,s)\epsilon(u,t)$.

Describe in detail the elementary $m \times m$ matrices

(i) $E(r, s; \lambda)$ $(r \neq s)$; (ii) $\Delta(r, \lambda)$ $(\lambda \neq 0)$; (iii) P(r, s) $(r \neq s)$ in terms of the basic matrices $\epsilon(r, s)$.

For the matrix A below, find A^{-1} and express A^{-1} as a product of elementary matrices; hence also express A as a product of elementary matrices.

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right).$$

PLEASE TURN OVER

www.mymathscloud.com

- 3) Let V, W be vector spaces over a field \mathbf{F} and let $T:V\to W$ be a mapping; explain what is meant by saying that T is linear. When T is linear, explain what is meant by
- (a) the kernel, Ker(T) and
- (b) the image, Im(T).

State and prove a relationship which holds between dim Ker(T) and dim Im(T).

Let $T_A: \mathbf{Q}^5 \to \mathbf{Q}^4$ be the linear mapping $T_A(\mathbf{x}) = A\mathbf{x}$, where

$$A = \left(\begin{array}{ccccc} 1 & 2 & 0 & 0 & 1 \\ -1 & -2 & 1 & 0 & 1 \\ 1 & 2 & -1 & 1 & 2 \\ 2 & 4 & 0 & 1 & 5 \end{array}\right).$$

Find (i) dim $Ker(T_A)$; (ii) a basis for $Ker(T_A)$; (iii) a basis for $Im(T_A)$.

4) Let $T:U\to V$ be a linear map between vector spaces U, V, and let $\mathcal{E}=(e_i)_{1\leq i\leq m}$ be a basis for U and $\Phi=(\varphi_j)_{1\leq j\leq n}$ be a basis for V. Explain what is meant by the matrix $m(T)_{\mathcal{E}}^{\Phi}$ of T taken with respect to \mathcal{E} (on the left) and Φ (on the right) and prove that if $S:V\to W$ is also a linear map and $\Psi=(\psi_k)_{1\leq k\leq p}$ is a basis for W then

$$m(S \circ T)^{\Psi}_{\mathcal{E}} = m(S)^{\Psi}_{\Phi} m(T)^{\Phi}_{\mathcal{E}}.$$

$$\text{Let } \mathcal{E} = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \} \;\; ; \;\; \Phi = \{ \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \}$$

be bases for \mathbf{F}^3 and let $T: \mathbf{F}^3 \to \mathbf{F}^3$ be the mapping

$$T\begin{pmatrix} x_1 \\ x_2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2x_2 & +x_3 \\ -4x_1 & +5x_2 & +2x_3 \\ 2x_1 & +x_3 \end{pmatrix}.$$

Write down (i) $m(T)_{\mathcal{E}}^{\mathcal{E}}$ and (ii) $m(\mathrm{Id})_{\Phi}^{\mathcal{E}}$, and hence find $m(T)_{\Phi}^{\Phi}$.

CONTINUED

www.mymathscloud.com

5) Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a subset of a vector space V; explain what is meant by saying that the set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is linearly independent.

In each case below, decide with justification whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.

(a)
$$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \\ -2 \end{pmatrix}$;

(b)
$$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ -1 \\ 1 \end{pmatrix}$;

Explain what is meant by a spanning set for a vector space V. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a spanning set for V, and suppose that $\mathbf{u} \in V$ can be expressed as a linear combination of the form

$$\mathbf{u} = \sum_{r=1}^{n} \lambda_r \mathbf{v}_r$$

with $\lambda_1 \neq 0$. Show that $\{\mathbf{u}, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is also a spanning set for V. State and prove the Exchange Lemma.

PLEASE TURN OVER

www.mynarnscloud.com

- 6) (i) Let σ be a permutation of the set $\{1, \ldots, n\}$; explain what is meant by saying that (a) σ is a transposition; (b) σ is an adjacent transposition. Show that any transposition can be written as a product of adjacent transpositions.
- (ii) Decompose $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 13 & 8 & 10 & 1 & 7 & 6 & 5 & 11 & 9 & 4 & 2 & 12 \end{pmatrix}$

into a product of disjoint cycles and hence compute $sign(\sigma)$ and $ord(\sigma)$.

(iii) Let $\mathcal{P}_7(\mathbf{R})$ be the vector space of polynomials of degree ≤ 7 over the field \mathbf{R} and let $D: \mathcal{P}_7(\mathbf{R}) \to \mathcal{P}_7(\mathbf{R})$ be the linear map given by differentiation. Write down the least positive integer n for which $D^{3n} = 0$ on $\mathcal{P}_7(\mathbf{R})$.

By factorisation of the formal expression $D^{3n} - I$, or otherwise, show that the mapping

$$D^6 + D^3 + I : \mathcal{P}_7(\mathbf{R}) \to \mathcal{P}_7(\mathbf{R})$$

is invertible, and write down

- (i) an expression for its inverse in terms of D, and
- (ii) the unique solution $\alpha \in \mathcal{P}_7(\mathbf{R})$ to the differential equation

$$\frac{d^6\alpha}{dx^6} + \frac{d^3\alpha}{dx^3} + \alpha = x^7.$$

END OF PAPER